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In an earlier report on tidal mixing in estuaries [l] an 

equation for the diffusion of a solute in an essentially vertically 

homogeneous estuary in which the major influences affecting the 

movement and mixing of fluid are the tides and river flow is 

derived, namely 

c || + R |S = D -£(x2 9fi) + q(x,t), (1) 
at    9x    dx   ox 

where c is the time average of the estuary cross-section over 
a tidal cycle, assumed here to be independent of both 
x and t; 

R  is the river discharge and has dimensions LJT" ; 

2 -1 
D  is a positive constant having dimensions L T  and 

is defined in Eq* 116 of reference [1]; 

q  is the amount of solute added externally and has 
dimensions ML" T~ ; 

s  is the concentration of the solute, having dimensions 

_ ML"3; 

x  is the distance along the estuary, measured downstream 
from the position at which the motion in the estuary 
due to the tides is assumed to be zero# 

In this report we consider several solutions of (1); in the 

first s is the concentration of salinity in the estuary, R is 

a function of time and q(x,t) = 0; in those following, s is the 

concentration of an externally introduced solute, R is constant 

and q is assumed to depend only on x« 

We proceed then with the solution of 

ciS + R^ = DLx2 Ifl) (2) 
at        ax        ax      ax 

in which R = R(t), and D and (a + b) are constants.  It is assumed 

that the time variation of R is sufficiently small so that 

(a + b) -gl is small relative to the other terms in (2) and 

hence we use the procedure of successive approximations in the 

* Numbers in square brackets refer- to the bibliography at the 
end of the paper* 
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solution of (2). 

The boundary conditions to be placed on each of the succes- 

sive approximations of s are that the salinity at the mouth of 

the estuary be d , a constant, and that the salinity ?t some 

point upstream be zero. Since the river discharge is a function 

of time we wish to permit the distance, L, from this point to the 

mouth (the effective length of the estuary) to vary with time, 

in which case it is convenient to choose our coordinate system 

with origin at the mouth of the estuary. However, with this 

shift in the origin the term x2 in (2), which is proportional to 

the squrre of the distance moved by a particle due tc the tides, 

must be replaced by (L + x) so that we now have 

in which R and L are assumed to be known functions of time. It 

must also be assumed that R and L do not vary significantly over 

a tidal period in order that the derivation which leacTs to equa- 

tion (1) remain valid. Physically, this appears to be a reason- 

able assumption. 

V/'e now define successive approximations sQ, s,, ... to tho 

solution of (3) by 

D -2-t(L+ x)2^j=R ^SL (4 ) 
dx        8 x      ox 

» 

D JLU  + x)2 -•£]» R —a +c —0=1, n=l,2,...    (4.1) 
ax      3x    ax   at 

-.where the sn(x,t) (n=0,l,2,,..) are assumed to satisfy tho 

boundory conditions 

sn(0,t) = b for all t, (5) 

sn(-L(t),t) = 0    for all t. (6) 
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Integrating (4) we have 

D(L + x)2 £f& - Rs0 a f^t) . (7) 

Here, as well as in the succeeding equations, the f^Ct) (1=1,2,,..) 

will be used to denote arbitrary functions of time vi/.ich will be 

determined by the boundary conditions (5) and (6), Multiplying 

both sides of (7) by the integrating factor 

R 
.1 . -. eD[L+x7 

D(L + x)2 

and integrating, we have 

-R 

s0<x?t) ^  - £li*i + .f2(t)e
D(Lfx) . (8) 

R 
Imposing (5) and (6) on this solution wo have 

R t 

fx(t) g 0 r f2(t)"^deDL , 

S° that fl(l ..   1 ) 
sD-<x,t)- -<j-eD L ~ L+x    . (-$0- 

Integrating (4.1)  we have, for s^Cx.,*), 

x 
o 9ST I  6s 

D(L + x)2 ~i - Rs-, = c \ —a dx + f ,(t) .     (10) 
ax   x   ] at     3 

-L 

The lover limit in the integral in (10) is set equal to ~L merely 

in orc!er to simplify the application of the boundary conditions. 

As with (7), we multiply both sides of (10) by the integrating 

factor R 

 _L eD(L+x) 
D(Lfx)2 

and integrate,  obtaining 

-R        X R x 

sn(x,t) »  ce^lf^T    \ __JL_ eWZZJ \     *ft d3S ^ _ 
1 J D(Lfx)2 ^    ^ 

o ~L 
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=L 
R     * 

(11) 

the leer  limit of the  Integration cgaln being chosen in order 

tc simplify the  application of the  boundary conditions.    Consider- 

ing the double  integral in  (11)  we have, upon interpreting by parts, 

3C X 

D(L + x)* 
w Q 

D(L+x) as 

at   dx dx m 

-L 

1 
R 

R 
JD(L+x) —Si dx 

3t 
+ R 

,5*15*7 £ dx# 

-L 

(12) 

Substitution of   (12)   in  (11)   then gives 

X r> 
J&. 

„   /•„   +N   _   e   -D(JrfX) .^^ £ft dx. I. 9s 

R   j   -5Tdx 

I   |^ dx . h£l + f4(t)a^^.  (13) 
-L 

From (9)  v;o havo 

at 
= ir(R)! .     P1    x _Jit 

*      (L + x)? (14) 

in which the primes denoto differentiation with respect to time, 
as 

Thus  the  integrand __£ in two of the  integrals  in  (13)  remains 
^ <  < finite over tho range of integration, -L = x *= 0, Further, 

although the integrand in the first integral on the right hand 

side of (11) becomes infinite at x = -L, 

x 
n(TZTTI   as,, 

* n , 

p       P 
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Thus we may apply boundary condition (6) to (13) and obtain 

f3(t)  = 0. 

Then applying  (5)  to  (13)  we have 

fA(t) = oeDL  , 

so that 

-R 
Sl(*,t)  = s0(x,t)[l+^eDL        eD(Lfx)   *£ dx 

S(T^ - h 
+  c-  I    !fft dx - JL eDVL+x      L' + t)R   1     at c?R 

r 
at*dx]- 

-L -L 

We consider now the various terms  in (15).    From (14) 

(15) 

JL eDL 

OR fit 

X 
( 

n L        L + x      (L + x)2 

(16) 

= fi*(fi)+ AL ice 
DRVI/  T DR L + X + *(*- D  XL      L + x )   . 

Also from (14)  we have 

J  ? 
X J>£   Mfo dx .   e   e 
OR /dt aR 

8<LJS-fr     (9sc 
61 

UX 

-L 
R     ? 

-L 

= X eDL 

DR 

-A 

-R 
[(E) _ JIL •       RL'     leDO^xT d: 

L L + x      (L + x)2 

-L 

e 
• B . 

D(IrfX) 
L        " + x      (L + x)2 
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R   ° 

A-"Ljl*,-rfTFl-lteto 

-L 

„.|;eo^7   ([(E)'._HL_]e^yax 

-L 

«   _DL 
+ £ilo e 

-R 
D(L+x) 

R r       -R 
_ flUL e

D(L+x)   j e
D(Lfx) 

iL 
I 
L 

-L 

Noting that the last two terms in the expression directly above 

cancel each other, we have 

9s. 

<*   IE* dX 
c _DVL+X 

" OR G 

-L 

dx 

R ? 
AY&)' re

DL 
-R 

(1 a-)e
D(Lfx) dx 

L+x 
-L 

- e D(L+x) 
-R 

(1 - --«-.)eD(L+,3c> das] 
L + x 

-L 

•17) 

where 

R' 

({>• 
In erch of the integrals in (17) let y = *-£—*• so that 

-R 
00 

(i   a \„D(L+x) dv _ R 

-L R 
D(L+x) 

y2  Ry 

(18) 
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Integrating the first term in the integral on the right hand side 

of the equation directly above by parts we have 

CC 00 00 

,-y ay = e -y 

R 
D(L+x) 

e -y 

J     y 
R      R 

DTL+XT  D(L+x) 

Cv 

so that 
-a -R 

(1 .. JLOe^1^ dx = (L + x)e
D'L+x) - (o + ft) 

L+x D 

00 

e-y dy.(l9 

-L 

Substituting (19) in (17) we have 

R | 

OR j   at <JR J    at wM}\ 

CO 

+ (a+|)[e^^        j      e^dy-e 

R 
b(Lfx) 

DL 

00 

DL 

e -y 
dy 

1 

Finally,  substituting (16)  and (20)   in (15), we have 

(20) 

s,(x,t) = s.(x,t)<[l + &L log 
L+x 

+ ¥<i - ife> 
1 

•^•A^ife'-wft"; 
where 00 

,-y M(x)  = ex      2— dy . 

(21) 

(22) 

It may be noted that values of the funotion 
cp 

- Ei(-x) » I  e-^ dy 
J y 

x 
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are tabulated (see [2].) 

For the case in which the mean cross-sectional area c is 

a function of x the formal procedure leading to s0 and s.. is 

identical with that just given although the details of the inte- 

grations are more cumbersome. The term D •£-  (x £&) in (1) must 

then bo modified slightly and may be obtained from Eq. (97) of 

reference [l] . 

Wo now consider the solution of (1) for the ccse in which 

R is constant and q(x,t) * q(x) so that wo may assume c(x,t) * s(xX 

Then (1) becomes 

Dx2s" + (2Dx - R)s« = - q(x) , (23; 

in which primes denote differentiation with respect to x. The 

chango of both independent and dependent variables given by 

.(>) = .-H(.) , «= JL (a4) 

simplifies  (25)  to the particularly nice  form 

V - * ="^ q<jfe) H f(«) .        (25) 

Us ins the method of variation of parameters the general solution 

to (25) is _g_ 
z 2DL 

* =^i W2f(z^dz +    r|» 1f(z)d2 + OjC
2 + c2o"

z , 

oo z 

where c, and c- are arbitrary constants and ty.   and \|)? are two 

solutions to the homogeneous equation V -*l> =0 such that 

for which convenient choices arc 
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_ e2 ,     _ e~z 

The particular choije for the limits of integration in (?6) ore 

mode in order to simplify the application of the boundary condi- 

tions.  Thus 
z R , 

«.) - - fc   J ^qCafod. - |f   j    2-
2e^q(,£.)d2 + c^^ 

» 2 .-z + c-e 9°     • 

Substituting  (24)   in (26.1)  we now hove 
x „    L =a 

s(x) = jk I q(x)dx + 1 eDx   eDxq(x)dx + ^ + C^eP* 
A r£ 

(27) 

x 

V/e consider two special coses, namely 

(A.) q(x) m  Q6(x - x0) in which Q is o constant, 0 < x0 < L. 

This choice for q(x) should apply to the introduction of 

some solute at one point (x = x0) in the estutry. Q is 

then the rote of discharge of this solute into the estuary 

(of dimensions MT"1). 

(B) q(x) ss q in which q is constant over the range 0 < x < L. 

This choice for q(x) corresponds to introduction of solute 

uniformly over the entire effective length of the estuary 

and might apply in the investigation of ground seepage. The 

total rate of discharge of the solute into the cctvary ovor 

the range 0 < x < L is then qL. 

For q(x) as given in (A), (27) becomes 

s(x)  = £ 
? i    f

L    1 rfi 
6(x  - x  )dx + § oDx eDx  6(x - xQ)dx + cx + c2eJ 
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Thus if we imposo the boundary conditions s(0) = s(L) = 0 

(s(0) being set equal to zero since there is no mechanism to 

carry the solute upstream of the point x = 0, at which point the 

motion in the estuary duo to the tides is zero; and s(L) being 

set equal to zero because of the cssontially infinite reservoir 

provided by the ocean at the mouth of the estuary) then 

ol  * 0 , o2 = - £ e
DL , 

so that 

s(x)  = g  1 6(x - xjdx + g oDx  \   cD* 6(x  - xn)dx  -2cDL      :;' 
R        °    R °    E 

0 x (28) 

which may bo written in the form 

>DNL      x'l v    • v S T 

(29) 

0 = x < x0 

s(x)  = g[l - eD L      « ] x0 < x 

For q(x)  as given in (B),   (27) becomes 

s(x) =fl2+aeD3: 

R       R 
e      dx + o-^ + c2e Dx 

Again,  imposing tho boundary conditions s(0) = s(L)  = 0 we have 

CJL » 0 since        lim eDx      eDx dx = 0 
x^o J 

x 

and 

°2=        R 
ol eDL 
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so that 

S(X) a 9f „ f  eD l      * + g eDx    eDx dx .    (30) 

If we  let y = Jl    In the  integral in  (30)  then we have 
Dx 

L     ^ Dx 
y 

S* dy I eD* dx . §   \ 

DT 
R (3D 

5x R R 
= Le^ - xe55 • |   I   «2 dy D  J   y 

ft 

after  integrating by parts.    Substituting (31)  in (30)  we hove 

-R 
s(x)  a A eDx £ dy . (32) 

y 
JL 
DL 

It may be interesting to compare the solute distributions 

that result for q(x) as given in (A) and (B) respectively, 

assuming that the rates of discharge of solute throughout the 

entire effective length of the estuary are equal for the two 

coses, i.e., qL * Q. In Fig. 1 na/Q .?s a function of x/L is 

plotted for R/DL=0.8, the value civon for the Raritan River in a 

paper by Arons and Stommel [3]• The constant which they denote 

by P end call the flushing number is equal to R/DL in the 

notation used here. Values of the integral appearing in (32) are 

to be found in reference [2]. 
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Figure 1 presents two curves for the case in v;liich 

q(x) = Q6(x - x0)} in one x0/L « 0.4 and in the other xG/L = 0,8. 

It may be noted in particular that the solute density is appreci- 

ably greater over most of the estuary for the case in which 

x0/L s 0.4. It is to be hoped that this sensitivity of the 

solute density upstream of the external source to the position 

of the source may be used to ohook experimentally the validity 

of the solute diffusion equation (1) which we have been using* 

From (29) we may note that the maximum value of s(x) occurs 

at x = x0 in the ease in which q(x) = Q5(x - xQ). In Fig. 2, 

Rs(x0)/Q as a function of x0/L is plotted, A possible application 

of the data given in Fig. 2 is the determination of the maximum 

distance from the mouth of an estuary at which a known source of 

pollution may bo allowed to discharge into an estuary If specified 

limits are placed on the permissible density of pollution in the 

estuary. 
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